Tetrahedron Letters No.38, pp. 4603-4607, 1966. Pergamon Press Ltd. Printed in Great Britain.

SYNTHESE EINIGER D, L-N-B-PHENÄTHYL-AMINOSÄUREN

N. Seiler und G. Schmidt 1)

Max-Planck-Institut für Hirnforschung, Arbeitsgruppe Neurochemie (Leiter: Priv.-Doz. Dr. G. Werner), Frankfurt/M (Received 20 July 1966)

Die kürzlich erschienene Mitteilung von M.J. KARTEN und Mitarbeitern 2), in der die Synthese einer Reihe N-substituierter D. L-Asparaginsäure-Derivate beschrieben wird, veranlaßt uns die Darstellung N-substituierter D, L-Aminosäuren bekannt zu geben, deren Substituenten B-Phenäthylreste physiologisch bzw. pharmakologisch bedeutsamer Amine, des B-Phenäthylamins, des D.L-Amphetamins und des Hallucinogens Mezcalin, sind. Aus der Tabelle 1 sind die Struktur, die Analysenergebnisse, die Schmelzpunkte der dargestellten Verbindungen und die erzielten Ausbeuten ersichtlich. Die Darstellung der Verbindungen I-VI erfolgte durch Umsetzung von 1 mMol α -Chlor-, die der Verbindungen VII-XII von α-Bromfettsäure mit 3 mMol Base in 1 ml Äthanol durch 6 Stdn. langes Kochen unter Zugabe von 5 mg NaJ. Die Reaktionsprodukte isolierten wir durch Chromatographie an einer Säule mit stark basischem Ionenaustauscher (Dowex 1x8; 100-200 mesh), wobei die nicht umgesetzte Base mit Methanol + Wasser = 1 + 1, die Aminosauren mit Methanol + Wasser + Essigsaure = 5 + 5 + 2

(V/V) eluiert wurden. N-[D,L- α -Methyl- β -phenyl-]-athylglycin (II) gewannen YASHUNSKII und VASIL'EVA ³⁾ durch Hydrolyse des entsprechenden Aminosäureesters.

Die Asparaginsäure-Derivate XIII-XV erhielten wir nach der Methode von FRANKEL e.a. ⁴⁾ durch Addition der Amine an Maleinsäure. Die Verbindungen XIII und XIV sind in ähnlicher Weise von KARTEN e.a. ²⁾ dargestellt worden.

In Anlehnung an die Synthese der N-Methylglutaminsäure durch KNOOP und OESTERLIN 5) ließen sich die Verbindungen XVI-XXIII durch Hydrierung der entsprechenden α-Ketosäuren mit den Aminen bei Normaldruck gewinnen, wobei die Aminkonzentration so gewählt war, daß ein Äquivalent freie Base als Überschuß in der Methanollösung vorhanden war. Als Katalysator diente Pto, nach ADAMS. In diesem Fall konnte die Reinigung der Aminosäuren unmittelbar durch Kristallisation erfolgen. Substanz XIX synthetisierte auch S. KANAO 6) durch Umsetzung von 1-Chlor-2-phenyläthan mit D- bzw. L-Phenylalanin. Glyoxylsäure, α-Ketoglutarsäure und Phenylbrenztraubensäure hydrierten wir in der gleichen Weise auch zusammen mit ³H-Mezcalin. Im Benzolkern markiertes ³H-Mezcalin war nach ⁷⁾ dargestellt worden. Die spezifische Aktivität der Reaktionsprodukte war die gleiche wie die des eingesetzten ³H-Mezcalins. Nicht umgesetztes radioaktives Mezcalin konnte praktisch vollständig wiedergewonnen werden. Die Ausbeute an III betrug nach diesem Verfahren 45%.

Die N-substituierten Aminosäuren werden auf ihre pharmakologischen und biochemischen Wirkungen hin untersucht.

Tab. 1. Analysenerg	ebnisse, Ausbeuten und Schmelz	Tab. 1. Analysenergebnisse, Ausbeuten und Schmelzpunkte der dargestellten D'L-N-G-Phenäthyl-aminosäuren.	I-B-Phenäthyl-aminosäuren.
	$\left\langle \bigcirc \right\rangle_{^{-\mathrm{CH}_2-\mathrm{CH}_2-}}$	$\bigcirc \bigcirc - c_{12} - c_{14} - c_{13}$	CH ₃ 0 CH ₂ -
H-CH-CO ₂ H HN- HN-	¹ 2H C ₁₀ H ₁₅ N0 ₂ Beschrieben bei 9)10) Fp 244°C* 33% Ausb.	II $c_{11}H_{15}N_{02}$ Ber. C 68, 38 H 7, 82 N 7, 24 Gef. C 68, 17 H 7, 95 N 7, 16** Fp 220-225 $^{\circ}$ C (Åthanol/ Aceton); 55% Ausb.	LIII $c_{15}H_{19}N_{05}$ Ber. C 57,98 H 7,11 N 5,20 Gef. C 57,70 H 7,16 N 5,40 Fp 217-229°C (Zers.) (Methanol); 49% Ausb.
CH ₃ -CH-CO ₂ H HN-	IV C ₁₁ H ₁₅ NO ₂ Ber. C 68, 38 H 7, 82 N 7, 24 Gef. C 68, 28 H 7, 64 N 7, 35 FP 247-255°C (Zers.)(Äthan- ol/Aceton); 27% Ausb.	V C ₁₂ H ₁₇ NO ₂ Ber. C 69,54 H 8,26 N 6,76 Gef. C 69,39 H 8,20 N 6,95 FP 255-263°C (Zers.)(Äthan- ol/Aceton); 30% Ausb.	VI $C_{14}H_{21}NO_5$ Ber. C 59, 35 H 7, 47 N 4, 94 Gef. C 59, 28 H 7, 55 N 5, 06 FP 222-230°C (Methanol/ Aceton); 49%Ausb.
СН ₃ СН ₂ – СН- СО ₂ И нл-	VIII C ₁₂ H ₁₇ NO ₂ Ber. C 69,54 H 8,26 N 6,76 Ber. C 70,55 H 8,65 N 6,35 Gef. C 70,29 H 8,42 N 6,95 Gef. C 70,29 H 8,42 N 6,48 Fp 250-370°C (Zers.)(Methan-Fp 248-260°C (Zers.)(Methan-ol/Aceton); 80% Ausb.	VIII C ₁₅ H ₁₉ NO ₂ Ber. C 70,55 H 8,65 N 6,35 Gef. C 70,29 H 8,42 N 6,48 FP 248-260°C (Zers.)(Methan- ol/Aceton); 52% Ausb.	LX C ₁₅ H ₂₃ NO ₅ Ber. C 60,59 H 7,79 N 4,71 Gef. C 60,20 H 7,76 N 4,69 Fp 241-245°C (Methanol); 86% Ausb.
$ \begin{array}{c} c_{\mathbf{H}_{3}} \\ \downarrow \\ c_{\mathbf{H}_{3}} \\ c_{\mathbf{H}} \end{array} $ $ \begin{array}{c} c_{\mathbf{H}_{3}} \\ c_{\mathbf{H}_{3}} \end{array} $	X C ₁₃ H ₁₉ NO ₂ Ber. C 70,55 H 8,65 N 6,33 Gef. C 70,58 H 8,66 N 6,57 Fp 250-270 ⁰ C (Zers.) (Methanol); 31% Ausb.	XI $C_{14}H_{21}N_{0}$ Ber. C 71,45 H 8,99 N 5,95 Gef. C 71,26 H 8,89 N 6,05 Fp 235-245°C (Zers.)(Methan- ol/Aceton); 37% Ausb.	XIII $C_{16}^{\rm LE}$ $C_{16}^{\rm NO}$ $C_{16}^{\rm LE}$ $C_{17}^{\rm LE}$ $C_{17}^$

+
Tab,
Fortsetzung

# CZ	XIII	AIX	XV
202	$C_{19}H_{15}N_{04}$	$ c_{13}^{H_{17}N0}_{4}$	C ₁₅ H ₂₁ NO ₇
CH. CH. CO.H	Ber. C 60,75 H 6,37 N 5,90	Ber. C 62,24 H 6,82 N 5,57	Ber. C 55,04 H 6,46 N 4,28
Z Z	HN Gef. C 60,95 H 6,46 N 6,04	Gef. C 61,79 H 6,77 N 5,66	Gef. C 54,87 H 6,49 N 4,36
	Fp 194-196°C (Methanol); 88% Ausb.	Fp 205-210°C (Methanol); 80% Ausb.	Fp 201-205°C (Methanol); 62% Ausb.
11 00 110	XVI	XVII	XVIII
C42-C024	$ c_{1}$ c_{1} c_{1} c_{1} c_{1} c_{1} c_{1} c_{1} c_{1}	$ c_{14}^{H_{19}N0_4}$	C16H23NO7.H20
н°00-но-сн-со-н	CH ₉ -CH-CO ₂ H Ber. C 54, 35 H 6, 32 N 4, 88	Ber. C 63, 38 H 7, 22 N 5, 28	Ber. C 53,53 H 7,01 N 3,90
	Gef. C 54,41 H 6,30 N 4,83	Gef. C 63,35 H 7,05 N 5,24	Gef. C 53,74 H 7,15 N 3,87
	Fp 167-167°C (Athanol/	Fp 164-166°C (Äthanol);	Fp 151-153°C (Wasser);
	VTV	AA	VVT
(C1,7H,0NO,	C ₁ C ₁ H ₂ , NO ₃	C20HogNOg.HC1
-сн-со-н	Ber, C 75.81 H 7,11 N 5,20	Ber. C 76,29 H 7,47 N 4,94	Ber. C 60,68 H 6,62 N 3,54
	Gef. C 76,03 H 7,16 N 5,18	Gef. C 76,34 H 7,47 N 4,90	Gef. C 60,69 H 6,63 N 3,63
	Fp 252-255°C (Zers.) (Eisessig); 75% Ausb.	Fp 255-265°C (Zers.)(Äthan- ol/Wasser); 45% Ausb.	Fp 197-205°C (Äthanol/ Äther); 60% Ausb.
	XXII		XXIII
	C19H20N2O2		C22H26N2O5
CH2-CH-CO2H	2H Ber. C 74,05 H 6,53 N 9,08	PP ARMIAN	Ber, C 66.32 H 6,58 N 7,03 Gef, C 66.03 H 6,53 N 6,95
<u>}</u> =	Fp 225-230°C (Zers.) (Eisessig); 42% Ausb.		Fp 220-227 C (Zers.) (Athanol/Wasser); 70% Ausb.

* Die Schmelzpunkte sind nicht korrigiert. Sie wurden mit Hilfe des LEITZ-Mikroskopheiztisches 350
bestimmt.
 ** Die Elementaranalysen wurden vom mikroanalytischen Laboratorium, Ilse BEETZ, Kronach/Ofr. ausgeführt.

LITERATUR

- 1) Teil der Dissertation von G. Schmidt
- M.J. KARTEN, E. MAGNIEN, A. SCHWINN u. S.L. SHAPIRO,
 J. Med. Chem. 9, 447 (1966).
- 3) V.G. YASHUNSKII u. V. F. VASIL'EVA, Zhur. Obshch. Khim. 30, 2754 (1960).
- ⁴) M. FRANKEL, Y. LIWSCHITZ u. Y. ARMIEL, J. Amer. chem. Soc. 75, 330 (1953).
- 5) F. KNOOP u. H. OESTERLIN, Hoppe Seyler's Z. physiol. Chem. 170, 186 (1927).
- 6) S. KANAO, J. Pharm. Soc. (Japan) 66, 4 (1946).
- 7) N. SEILER, G. WERNER u. K.-H. SCHMIDT, J. Labelled Compounds 1, 306 (1965).
- 8) H. DECKER u. P. BECKER, Liebig's Ann. Chem. 382, 369 (1911).
- 9) DRP 423027 (P. FRIEDLÄNDER, Fortschritte der Teerfarbenfabrikation Bd. 15, S. 1712, Springer, Berlin 1928).